

| $\mathbf{2}$ | | $12 x^{2}+9 x$ | 3 |
| :--- | :--- | :--- | :--- | :--- |

M2 for $3 x(4 x+3)$ or $6 x(2 x+11 / 2)$
Or M1 for $6 x \times(4 x+3)$ oe

Condone omission of brackets for M2 or M1

4	(a)	$\begin{gathered} {\left[h^{2}=\right] 2.8^{2} \pm 2.5^{2} \mathrm{oe}} \\ \\ \sqrt{2.8^{2}-2.5^{2}} \end{gathered}$ $1.26[\ldots]$ or 1.3 $3.36[\ldots] \text { or } 3.4$	M1 M1 A1 A1	Implied by $3.36[\ldots$...] or 3.4 After A0, SC1 for 2.1 + their $1.26[.$.]or 1.3 after the first M1 earned Scale drawing alone scores 0 Allow B4 for 3.36... or 3.4 www	Allow correct use of trig if angle EAD or ADE found first - M2 for correct explicit statement e.g. $\mathrm{AE}=2.5 \tan 26.7$ or M1 for correct implicit statement e.g. AE/2.5 = tan 26.7 (angle EAD $=63.2 \ldots$) (angle $A D E=$ 26.7...) Can earn M1M0A0SC1 but not MOMOA0SC1
	(b)	$\cos [\theta]=2.5 / 2.8 \text { oe }$	M1	correct cos statement or other trig fn used correctly with other side of triangle found in (a); condone poor notation	Could use longer methods finding other angle and then subtracting from 90 Could use a reverse method using 15° to show that the height is less than 1.3 M2 for correct explicit trig statement e.g. $h=2.5 \tan 15$ or M1 for $h / 2.5=\tan 15$ and A1 for correct answer and yes
		Inverse trig fn seen or used 26.7 to 26.8 or 27 and yes oe	M1	Independent of first M1 Condone poor notation Allow B3 for 26.7 to 26.8 or 27 and yes WWW	Allow clear intent e.g. invcos, $2^{\text {nd }}$ function cos, shift cos Check on calculator from first statement if not shown (acc to 2 sf)

